News/Events

  • George Mason receives $1.2 million to revolutionize Lyme disease testing

    George Mason receives $1.2 million to revolutionize Lyme disease testing
    Colleen Rich
    Wed, 05/15/2024 – 14:42

    Body

    George Mason University researchers have received $1.2 million in federal funding from the U.S. Department of the Army to revolutionize Lyme disease detection and diagnosis with urine testing. Scientists from George Mason’s College of Science and  College of Public Health aim to harness the many advantages of urine testing over other methods and increase mainstream adoption.

    “We have developed a urine test for Lyme disease that detects the bacteria (Borrelia species) that causes Lyme disease, making it a direct test to confirm an infection soon after the tick bite,” said principal investigator Alessandra Luchini. “This leads to earlier treatment when necessary and could prevent the long-term debilitating effects of the disease.”

    The current standard of care test for potential Lyme disease is an antibody blood test, which measures the immune system response to the bacteria that cause Lyme disease. In contrast, the George Mason test detects molecules derived from the bacteria themselves, which have the advantage of high specificity (accuracy) and early detection. The test matches the exact amino acid sequences (the building blocks of the bacterial molecules) that are found only in Borrelia and not in other organisms. For example, one of the proteins the George Mason scientists studied is part of the Borrelia flagellum, which allows the bacterium to move around the body.

    In Mason’s clinical research trials, urine tests had a 90% true positive rate (sensitivity) and close to 100% specificity (true negative rate).

    Researchers will use banked samples from cross-sectional and longitudinal studies of acute Lyme patients from the Lyme Disease Biobank and banked specimens from Johns Hopkins University, respectively, who are recognized leader in clinical Lyme disease research. 

    Utilizing her 15 years of Lyme disease bacteria (Borrelia) research, Ashley Groshong, PhD, unit chief of the Bacterial Physiology and Metabolism Section of the National Institute of Allergy and Infectious Diseases, a part of the National Institutes of Health, is collaborating on the project by evaluating the suitability of diagnostic indicators based on bacterial physiology.  

    Additionally, the George Mason study will pilot a collapsible urine collection cup shipped to a lab through the mail, making collection and diagnosis easier for more people to access through telehealth. 

    “A urine cup will offer a private, comfortable and convenient way to collect the sample at home without compromising the accuracy of the lab test,” said Lance Liotta, professor in the College of Science, co-director of Mason’s Center for Applied Proteomics and Molecular Medicine, and co-principal investigator on the study. “Shipped in a semi-dry state that will preserve target proteins and protects again specimen degradation, this approach will improve specificity, which has been a weakness of previous testing approaches.” 

    Lyme disease is the most common animal-to-human transmitted disease in the United States with approximately 476,000 people diagnosed and treated each year—and it is on the rise. If not treated quickly and properly, those bitten can suffer from prolonged symptoms (called Post-Treatment Lyme Disease Syndrome), such as concentration and memory issues, dizziness, fatigue, body aches, depression, and difficulty sleeping. 

    “This is a significant collaboration to advance diagnostics for Lyme disease,” said Melissa J. Perry, dean of the College of Public Health and co-investigator of the study. “This study will have a major impact on the timely diagnosis of Lyme. In my capacity as an epidemiologist, I am thrilled to work with Drs. Luchini, Liotta, and [Virginia] Espina, and Dr. [Jenna] Krall in her capacity as a biostatistician.”

    This three-year study will take place in the same Mason CAP/CLIA Clinical Proteomics Laboratory that implemented the innovative saliva COVID test. The lab is run by Espina, who is a collaborator on the grant.  

    In 2022, Luchini, Liotta, and the CAPMM team were one of 10 Phase 1 winners of the LymeX Diagnostics Prize by the U.S. Department of Health and Human Services and the Steven and Alexandra Cohen Foundation.

    In early 2023, CAPMM received $820,000 in federal funding to establish a clinic that will help combat Lyme disease and other tick-borne illnesses. The project, championed by U.S. Representative Jennifer Wexton, was part of the federal omnibus appropriations bill that President Biden signed into law to fund the government through Fiscal Year 2023. The federal funds will be used to launch the clinical deployment of diagnostic testing that will allow for a quicker and more efficient diagnosis.

    This work will be supported by the Assistant Secretary of Defense for Health Affairs through the Tick-Borne Disease Research Program, endorsed by the Department of Defense. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

     

George Mason University’s Our Future series hosted by President Gregory Washington speaks with Fernando Miralles-Wilhelm, Dean of the College of Science, about water, why there’s too much in some places, too little in others, and what we can do, in warming world, to avoid catastrophes.

Latest News:

Events

Events in May 2024

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
April 29, 2024
April 30, 2024
May 1, 2024
May 2, 2024
May 3, 2024
May 4, 2024
May 5, 2024
May 6, 2024
May 7, 2024
May 8, 2024
May 9, 2024
May 10, 2024
May 11, 2024
May 12, 2024
May 13, 2024
May 14, 2024
May 15, 2024
May 16, 2024
May 17, 2024
May 18, 2024
May 19, 2024
May 20, 2024
May 21, 2024
May 22, 2024
May 23, 2024
May 24, 2024
May 25, 2024
May 26, 2024
May 27, 2024
May 28, 2024
May 29, 2024
May 30, 2024
May 31, 2024
June 1, 2024
June 2, 2024