Categories
Uncategorized

Mason researchers receive funding for Murtha Cancer Center Clinical Proteomics Platform – RPPA Assessment In The APOLLO Program.

Elizabeth Grisham

Emanuel Petricoin and Lance Liotta, Co-Directors of Mason’s Center for Applied Proteomics and Molecular Medicine (CAPMM),received funding for: “Murtha Cancer Center Clinical Proteomics Platform – RPPA Assessment in the APOLLO Program.” 

Petricoin and Liotta will: 

1. Lead the RPPA discovery proteomics efforts in the Murtha Cancer Center Clinical Proteomics Platform. This includes receipt of tissue lysates, tissue sections or enriched cell preparations, and preparation of lysates, along with all aspects of the RPPA workflow including plating, printing, staining, and image-based data extraction. All data will be jointly shared and analyzed with APOLLO investigators; 

2. Participate in the weekly executive APOLLO team meetings to review scientific and programmatic progress; 

3. Provide scientific guidance and technical oversight for the RPPA capability as part of the Murtha Cancer Center Clinical Proteomics Platform; 

4. Represent the scientific accomplishments of the Murtha Cancer Center Clinical Proteomics Platform at local, regional, and national scientific conferences; 

5. Assist in preparation and delivery of technical and programmatic briefings as necessary; 

6. Prepare technical quarterly and annual reports for the Murtha Cancer Center Clinical Proteomics Platform; 

7. Coordinate and participate in weekly technical review meetings; 

8. Meet with scientific staff weekly to review progress and plan next technical objectives for the Murtha Cancer Center Clinical Proteomics Platform; 

9. Help prepare technical publications and presentations; and 

10. Help develop new collaborative opportunities and sustainment of ongoing collaborations for enrichment of the Murtha Cancer Center Clinical Proteomics Platform translational impact. 

The researchers received $281,319 from the Uniformed Services University of the Health Sciences on a subaward from the Henry M. Jackson Foundation for this project. Funding began in May 2022 and will end in late April 2023. 

Categories
Uncategorized

Mason’s surveillance testing team honored for its efforts

Mason’s surveillance testing team honored for its efforts
John Hollis
Mon, 02/28/2022 – 15:46

Body

Mason formally recognized the many dedicated scientists, first responders, program administrators and medical personnel whose tireless efforts paved the way for the school’s successful COVID-19 surveillance testing program during the global pandemic. Photo by Evan Cantwell/Creative Services

George Mason University officials on Monday formally recognized the many dedicated scientists, first responders, program administrators, staff and medical personnel whose tireless efforts paved the way for the school’s successful COVID-19 surveillance testing program during the global pandemic.

The reception in their honor at Merten Hall was Mason’s way of giving a heartfelt thanks for a job well done.

“I can give you all a thousand thank you’s,” said Mason President Gregory Washington. “And I know the reality is that it doesn’t happen if you all don’t make the commitment, if you all don’t put in the hard work, if you all don’t put in the extra hours, if you all don’t have to deal with the changing policies and the struggles that we were in many cases foisting upon you. But you did it, you did it admirably and your results are spectacular.”

Since the program’s inception in fall 2020, Mason has administered more than 155,000 COVID tests to students, faculty and staff. Processing the tests in Mason’s own labs means results are returned within 24 to 48 hours. The fast turnaround time meant Mason scientists could quickly identify and isolate positive COVID cases which lead to timely notification to those members of our community that needed to self-isolate to mitigate outbreaks within the Mason community.

The quick turnaround required immense time and staff power, key factors in helping keep the community safe while elevating Mason to national prominence for its response to the pandemic. The university’s ability to  monitor the prevalence of COVID within the campus community and transmission rates played a key role in the decision to open its doors on time for fall 2021 and spring 2022 semesters.

Lance Liotta, the co-founder and co-director of the Center for Applied Proteomics and Molecular Medicine within Mason’s College of Science which oversaw the testing, called what his team accomplished “historic.” Liotta noted that his team conducted 1,000 thousand tests on Friday, Feb. 25, without a single positive case of COVID.

Carol Kissal, Mason’s senior vice president for administration and finance, lauded the team for their efforts that have served to inspire the entire Mason community.

“You have all been part of something that is pretty phenomenal,” she said.

The surveillance and diagnostic testing program started in the Ángel Cabrera Global Center parking garage in late August 2020, where staff overcame the elements and other unexpected technological hurdles to help Mason navigate the early stages of the COVID pandemic and COVID virus of which very little was known at the time. It wasn’t long before Mason’s COVID Response Team and scientists had devised new collection procedures at sites across all of Mason’s campuses, each aimed at keeping site staff and test participants safe through an efficient and expeditious testing process.

Mason’s reliable surveillance testing system is also critical in allowing Mason student-athletes to continue competing safely throughout the pandemic.

 

Categories
Uncategorized

Honey bees and their honey could be a big help in solving police cases

Honey bees and their honey could be a big help in solving police cases
John Hollis
Tue, 01/18/2022 – 14:33

Body

Volunteers plant perennials at the Forensic Science Research and Training Laboratory in support of ongoing research to determine if traces of human remains can be identified in the plants or in the honey produced by pollinators. Photo by Shelby Burgess/Strategic Communications

An unlikely collaboration between George Mason University’s Honey Bee Initiative and the new outdoor Forensic Science Research and Training Laboratory could yield critical advances in forensic science. 

Mason teams from a number of different fields are working in unison at the Science and Technology Campus in Manassas, Virginia, on an ambitious project to see if the honey produced by bees after feeding on flowers can help them better locate missing persons. 

“The focus of forensics is to solve cases,” said Mary Ellen O’Toole, the head of the Forensic Science Program within Mason’s College of Science and a former FBI profiler. “Outdoor crime scenes have always posed a challenge to investigators, particularly identifying the location of human remains. The bee research will allow us to scientifically demonstrate that identifying bee activity in bee farms or in the wild and analyzing their proteins can help lead investigators to human remains. In this case, the bees are our new partners in crime fighting, and that’s amazing science.” 

Proteins in bee honey contain biochemical information about what the bees have fed upon. That information has previously been used to detect the chemical signature of pesticides in honey, allowing observers to deduce what specific types of pesticides were being used within the five-mile radius from the hives that honey bees typically frequent. 

Similarly, O’Toole and her team believe that volatile organic compounds (VOCs) of human decomposition might likewise be found in bee honey, allowing authorities to then triangulate where missing human remains might be located. That ability could ultimately help spare grieving families additional extended angst while also saving thousands of hours in the search for a missing person. 

“If we can determine what the VOCs are for humans and differentiate that from other animals, we could then use the bees and their honey as sentinels, and, hopefully, find missing persons and solve cases,” said Anthony Falsetti, an associate professor of forensic science. 

Their belief is based on the premise that flowering plants near dead bodies will uptake the VOCs before being fed upon by the bees and ultimately being deposited in their honey. 

Alessandra Luchini, an associate professor within Mason’s Center for Applied Proteomics and Molecular Medicine (CAPMM), has perfected a method to extract proteins from the honey. She and Lance Liotta, a University Professor and CAPMM co-founder and co-director, have been involved with the project from the outset, following the idea’s origins at one of the monthly research meetings with the Forensic Science Program. 

Honey bees are very specific in the kinds of the flowers to which they’re attracted. Doni Nolan, Mason’s Greenhouse and Gardens sustainability program manager from the School of Integrative Studies within the College of Humanities and Social Sciences, applied her expertise to the project, choosing the right flowers to plant within the specific one-acre section of the newly opened Forensic Science Research and Training Laboratory that will house the remains of human donors in a heavily wooded area. The honey bee hive on the SciTech Campus is located several hundred yards away from the Forensic Science Research and Training Laboratory. 

Volunteers prepare to plant flowers at the Forensic Science Research and Training Laboratory. Photo by Shelby Burgess/Strategic Communications

In November, students and researchers planted several different species of plants, which bear highly scented white and yellow blossoms, near the spots where the human remains will soon be displayed. Additional plants native to this area will be planted in the spring before the first honey samples are examined, Nolan said. 

“You’re trying to see if the honey and the bees can help us find a body and solve a homicide,” said Nolan, who has a biology degree from Mason and is working on a PhD in biosciences. 

The five-acre, Forensic Science Research and Training Laboratory opened in early 2021, making Mason just the eighth location in the world capable of performing transformative outdoor research in forensic science using human donors and the only one in the Mid-Atlantic region. 

Donation of human remains to the research facility will come through the Virginia State Anatomical Program (VSAP), which is a part of the Virginia Department of Health. Go here to learn more about donating your body to science. 

Mason also entered a partnership with FARO Technologies, Inc. that resulted in the world’s first FARO-certified forensic laboratory. 

In addition to those in the Forensic Science Program, the multidisciplinary project also includes the caretakers of the honey bees, as well as researchers and students from CAPMM, as well as from the Department of Environmental Science and Policy within the College of Science and Office of Sustainability, all of whom helped select the plants for the research design.

Categories
Uncategorized

Mason research could change the way concussions are diagnosed

Mason research could change the way concussions are diagnosed
Colleen Rich
Thu, 07/01/2021 – 10:54

Body

Two research professors at George Mason University, in collaboration with global partners, have discovered the same protein biomarkers in the saliva of youth and collegiate athletes who have experienced concussive and sub-concussive impacts.

Shane Caswell

The findings, if validated in larger, independent studies, could be used to develop a new, rapid, noninvasive, saliva-based test for concussion diagnosis and management, as well as a way to monitor changes to the brain following exposure to repetitive sub-concussive impacts.

The study, conducted by Mason professor of athletic training Shane Caswell and University Professor Emanuel Petricoin, was recently published in the Journal of Neurotrauma.

“Salivary biomarker research can, hopefully, enhance already existing tools that diagnose concussions, as well as track brain health over time,” said Caswell, one of the study’s lead researchers and executive director of Mason’s Sports Medicine Assessment, Research, and Testing (SMART) Laboratory. “This is valuable, not only in all levels of sports, but also in military settings.”

Concussion and repeated sub-concussive impacts, which are blows to the head that do not produce immediate symptoms, could have long-term adverse health consequences if athletes return to contact activity too soon.

Concussion management currently relies on subjective measures to inform clinical judgement. New strides have been made recently, such as a handheld blood test developed by Abbott Laboratories to diagnose concussions. But there continues to be limited understanding of how repeated sub-concussive impacts, that frequently do not cause concussion symptoms, affect the brain.

Emanuel Petricoin

“There is a need for nonsubjective, diagnostic measures to be able to assess someone’s traumatic brain injury level, either in a concussed or sub-concussed state,” said Petricoin, co-director of Mason’s Center for Applied Proteomics and Molecular Medicine (CAPMM). “This is important for health care providers so that they can make accurate medical judgements.”

Mason’s research identified antibodies in saliva that target proteins such as HTR1A, SRRM4, and FAS, which are known to play a role in brain physiology and function. Their presence correlates with concussions and how many hits and athlete sustained during a season of play.

Compared to healthy athletes, individuals who were diagnosed with a concussion, or who suffered high exposure to sub-concussive impacts, showed an elevation of the same salivary biomarkers.

The research team worked with youth, high school, and collegiate athletic teams and their medical staffs across the Washington, D.C., metropolitan area, to collect saliva to create a Sport-Related Head Trauma Salivary Biobank. This first-of-its-kind biobank contains saliva collected from healthy athletes, athletes diagnosed with concussions, and athletes who sustained repetitive sub-concussive impacts.

Sensors worn by the athletes measured the number and severity of hits. Collected saliva was tested using a Mason-developed nanoparticle technology. Analysis was completed by researchers at the KTH Royal Institute of Technology in Stockholm, Sweden, which is a leader in the world of autoimmunity research.

“Once someone has experienced a concussion, it is hard to know when they are fully healed from it, meaning it may take less of an impact for a second concussion to occur,” Petricoin said. “It’s important to study concussion biomarkers in youth because growing evidence suggests that if we can monitor head impacts more effectively, it will support their long-term health.”

Categories
Uncategorized

Mason start-up Ceres Nanosciences experiences big wins and increases footprint in Prince William County

Mason start-up Ceres Nanosciences experiences big wins and increases footprint in Prince William County
Colleen Rich
Tue, 04/20/2021 – 08:49

Body

Ross Dunlap is CEO of Ceres Nanosciences and a member of the George Mason Research Foundation board. Photo provided

Ceres Nanosciences, a Northern Virginia bioscience company spun out of George Mason University that specializes in diagnostic products and workflows, has opened a 12,000-square-foot advanced particle manufacturing plant in Prince William County’s Innovation Park. The new facility increases the manufacturing capacity of Ceres’ Nanotrap® Magnetic Virus Particles, which improve diagnostic testing for viruses like SARS-CoV-2, influenza, and respiratory syncytial virus.

 

The completion of the new facility also reflects the partnership between Mason and the Prince William County Department of Economic Development (PWCDED).

 

“The PWCDED has a long-standing relationship with Mason, specifically with the Science and Technology Campus that anchors our bioscience hub in Innovation Park,” said Christina Winn, executive director of PWCDED. “Ceres was the first company to graduate our Science Accelerator, and we are invested in their growth as a leader, collaborator and innovator in our life sciences industry cluster.”

 

The construction of the facility, which was completed in under four months, was funded by the National Institutes of Health (NIH) Rapid Acceleration of Diagnostics (RADx) initiative to expedite the production and commercialization of diagnostic tests for the SARS-CoV-2, the virus that has become known as COVID-19. Prince William County also supported the swift development of the site.

 

“We’re immensely grateful for the NIH funding that supported this new facility,” said Ross Dunlap, Ceres Nanosciences CEO. “Not only are we now able to deliver a robust supply of this critical reagent that the industry needs, but the facility also is a major element of Ceres’ long-term growth plan.”

 

Dunlap and his team have noticed significant gaps in the diagnostics industry and infrastructure in the United States, especially in response to an outbreak. He hopes that because the Nanotrap® Magnetic Virus Particles reduce sample processing time, eliminate the need for special kits, and create cost efficiencies, the technology can be leveraged to respond faster to future pandemics.

The Ceres Nanosciences production team. Photo provided

“It was very fortunate that we had put a lot of energy into developing the technology for viral infections and released a product for it before the pandemic, not even knowing that COVID-19 would come about,” said Dunlap, who serves on the George Mason Research Foundation board. “We were able to rapidly respond and quickly validate our technology for COVID diagnostics, which was done in partnership with Mason.”

 

The base technology underlying the Nanotrap® particle was created by Mason’s Center for Applied Proteomics and Molecular Medicine (CAPMM), which is led by co-directors Lance Liotta and Emanuel Petricoin. The technology was funded with a series of NIH grants from the NIH lnnovative Molecular Analysis Technologies (IMAT) program.

 

It was then licensed to Ceres Nanosciences in 2008. Follow-on funding to advance the technology was awarded to the Ceres and Mason team by the NIH, the Center for Innovative Technology, Virginia Catalyst, the Bill and Melinda Gates Foundation and the Department of Defense.

 

“We are very proud to see that a technology developed under NIH funding at Mason has graduated to a product that is aiding in the fight against COVID-19 and promises to help patients all around the world for many other diseases,” said Alessandra Luchini, associate professor for CAPMM and co-inventor of the Nanotrap®.

 

With the assistance of Mason researchers, who played a large role in efforts such as testing particles and generating data, the technology evolved into a platform that can be modified and adapted to different applications, such as infectious diseases. For example, in 2015, Mason CAPMM scientists and Ceres Nanosciences demonstrated the use of the Nanotrap® technology for the detection of Lyme disease. Today, the Lyme Borrelia Nanotrap® Antigen Test is offered by Galaxy Diagnostics, a medical laboratory that specializes in tests for flea- and tick-borne pathogens.

 

“Mason has a lot to offer when it comes to cutting-edge technologies,” said Hina Mehta, director of the Office of Technology Transfer. “We are always looking for the right partners, like Ceres Nanosciences, who can take our research discoveries to commercial-grade products that benefit the public.”

 

Ceres Nanosciences and Mason have worked together since the company’s genesis. Ceres’ first lab was on Mason’s Science and Technology Campus, and the two organizations have collaborated on numerous research projects.

 

“Mason has consistently been a resource that we go to when we need extra support and research power,” said Dunlap. “The researchers have a range of backgrounds that we need: from virology to microbiology to proteomics. Their areas of expertise have been critical across a lot of our development programs.”

 

Dunlap said he and his team, along with continued support from Mason, are eager to help people return to pre-pandemic life.

 

“Our team is incredibly excited and motivated to come to work every day and produce these particles so that people can go back to work and school,” said Dunlap. “We’re proving why this technology has such value and why it can do so much for public health.”

 

Categories
Uncategorized

Doctoral student combines love of lab research with practical applications

Doctoral student combines love of lab research with practical applications
Colleen Rich
Mon, 03/29/2021 – 13:48

Body

Mason doctoral student Marissa Howard has worked at the Center for Applied Proteomics and Molecular Medicine (CAPMM) since 2016. Photo by Evan Cantwell/Creative Services

When Marissa Howard first came to George Mason University as an Honors College student and a scholar in the Louis Stokes Alliance for Minority Participation (LSAMP) Program, she was a biology major.

As she began looking for hands-on research experiences, her LSAMP mentor, Volgenau School of Engineering professor Alok Berry, suggested she give bioengineering a try.

“It really clicked for me,” said the Richmond, Virginia, native, and she ended up switching her major to bioengineering.

In her junior year, Howard participated in Mason’s Aspiring Scientists Summer Internship Program (ASSIP). That’s when she met Mason researchers Lance Liotta and Alessandra Luchini. She spent the summer studying the electrical properties of their Nanotrap technology.

“I really loved it,” she said. “I really loved them, and they were excited by the work I was doing and asked me to continue working with them. Since 2016, I’ve been in [the Center for Applied Proteomics and Molecular Medicine (CAPMM)] lab.”

Biosciences PhD student Marissa Howard tests vaccine efficacy in healthy and immunocomprised patients by running a rapid COVID-19 antibody test. Photo by Evan Cantwell/Creative Services

For her senior capstone project in 2016-17, Howard led a team of bioengineering students—Sara Sharif, Sameen Yusuf, and Rohit Madhu—to create a noninvasive urine-based tuberculosis (TB) test called TB Assured, and the invention garnered a lot of attention for the team and many awards.

In addition to winning several Mason awards for being the best project of the year, the team also won the $15,000 prize from the National Institute of Biomedical Imaging and Bioengineering’s Design by Biomedical Undergraduate Teams (DEBUT) challenge to help develop the test further.

TB Assured started as a dipstick test, much like pregnancy tests, that would find biomarkers of TB in urine. In an effort to make the test more sensitive and user friendly, Howard came up with the idea of using a paper origami cup as a next generation urine collection cup for the test instead of a test strip.

The biomarker-harvesting Nanotraps are in a glass wool-like substance embedded in the cup. After use, the cup is emptied, collapsed back into its original flat, two-dimensional form, and can be mailed in an envelope for processing.

Everything that’s in the urine is captured by the Nanotraps, and you don’t need a centrifuge or other equipment,” said Howard, who completed her bachelor’s degree in bioengineering in 2017. “People loved it. They keep asking when it is going to be available at their local pharmacy.”

Howard is now a doctoral student in biosciences at Mason. During the coronavirus pandemic, Howard was able to get back into the CAPMM lab, but now all the researchers are working on COVID-19-related research.

“We are doing some of the analytical validation studies to help different companies file for FDA approval for their rapid COVID-19 antigen tests,” Howard said. “That’s been really interesting and fun—seeing all these different tests that come in.”

For her dissertation, Howard is focusing on cancer research. She is looking at how cancer exosomes (small, membrane-wrapped packages released by cells) communicate. The findings could help create a new kind of immunotherapy.

“[Looking at the exosomes in a tumor sample] is going to tell you a little bit more information than just the pathology would,” she said. “It’s sort of telling you what that tumor is thinking and how it is communicating to its neighboring cells.”

With completing her PhD still about a year away, Howard is planning a future in a lab, possibly in an academic setting.

“I love the research space and the creative potential that comes with it,” Howard said. “You never know when your next idea is going to pop up.”

Categories
Uncategorized

Mason COVID antibody testing shows a lot of promise in the body’s ability to fight the virus

Mason COVID antibody testing shows a lot of promise in the body’s ability to fight the virus
John Hollis
Mon, 03/01/2021 – 16:10

Body

COVID-19 antibody research by Lance Liotta and his team has shown the human immune system is better able to fight the virus than initially believed. Photo by Evan Cantwell/Creative Services

George Mason University researchers say their study of COVID-19 antibodies in people previously been infected with the virus reveals the human immune system’s strong ability to fight the virus, even if they showed minimal or no symptoms. Additional early results are showing that the vaccines being rolled out to combat the global pandemic generate a strong immune response. 

Lance Liotta, the co-director, co-founder and medical director of the Center for Applied Proteomics and Molecular Medicine (CAPMM) within Mason’s College of Science, and his colleagues are using an improved COVID-19 antibody test developed as part of a Mason clinical study to measure the body’s response to the vaccine. 

Based on months of study of patients who were naturally infected, Liotta and his team were able to verify that patients’ antibodies lasted longer than initially first believed and that they potentially helped prevent those patients from getting sick again. Early results of those who have been vaccinated have confirmed the shots to be strong boosters to the human immune system’s ability to combat the virus by generating more antibodies that block the virus spike protein tips. Tips of the spikes are the starting point for the virus to enter the patient’s cells. 

“This research offers truth and hope,” Liotta said. “The public is anxious and very worried about the virus. They want to know if the vaccines work. They want to know if the antibodies made by the body after a natural infection or after a vaccine will actively work to fight the virus. If I do get sick, can these antibodies help me? 

“The answer is yes.”  

That welcome revelation could be key in lessening the chance for severe sickness and limiting the spread of the virus. 

“Nevertheless we can’t let down our guard, and we must maintain social distancing and mask wearing practices that has protected our students and staff so well,” said Julie Zobel, Mason’s assistant vice president for Safety, Emergency and Enterprise Risk Management.  

Additionally, the expanded antibody research is providing scientists new clues about devising treatments for COVID-19, Liotta said, because of the many ways each of the different antibodies combat the virus. 

“We are humbled at how good the immune system is at fighting this,” Liotta said. 

Liotta and his team began their initial COVID-19 antibody study at the start of the global pandemic last spring. The testing allows scientists see how the body recognizes and reacts to the virus, particularly important when it comes to asymptomatic cases. 

“[Some of the subject tested] never knew that they had contracted COVID,” Liotta said, “but we can tell by looking at the antibodies that exist in their body. That’s a very important piece of information.” 

Antibodies, which are Y-shaped proteins generated by the immune system’s white blood cells, could prove critical in the fight against COVID-19. They attach to antigens much like a key to a lock to destroy invading germs. Once exposed to the virus, the body creates memory cells that will henceforth recognize the invader and spur the immune system to create antibodies to fight it in the future. So having antibodies to COVID-19 could possibly prevent people from becoming infected with the virus again. 

The aim of COVID-19 vaccinations is to stimulate a similar antibody response that would provide that protection from the virus. Liotta’s team of internationally recognized experts in diagnostic testing includes colleagues Virginia Espina, the research professor who oversees the Center for Applied Proteomics and Molecular Medicine’s CAP/CLIA certified laboratories, and Alessandra Luchini, the associate professor overseeing the development of the laboratory antibody assay in the nanotechnology lab. They will collectively use their expertise in clinical laboratory medicine, biochemistry, bioinformatics, molecular biology and infectious diseases to confirm those antibody responses. 

“Mason has been on the forefront of COVID research,” Espina said. “Since March, we have been working on different aspects of COVID research, and [Mason has been] very responsive to testing and keeping the campus community safe. We have done a wonderful job as a university in being able to keep the university open, prevent layoffs and allow students to come back onto campus.” 

Categories
Uncategorized

Mason expands urine-based test for Lyme disease

Mason expands urine-based test for Lyme disease
John Hollis
Thu, 10/29/2020 – 05:00

Body

A urine-based Lyme disease test created by a team of George Mason University researchers could soon become available statewide after a recent clinical validation study confirmed that it meets sensitivity and absolute molecular specificity standards.

Categories
Uncategorized

Mason team sets the stage for a test that can detect tuberculosis in children

Mason team sets the stage for a test that can detect tuberculosis in children
John Hollis
Mon, 08/24/2020 – 05:00

Categories
Uncategorized

Mason student-athletes undergo COVID-19 testing as they return to campus

Mason student-athletes undergo COVID-19 testing as they return to campus
John Hollis
Thu, 08/13/2020 – 05:00

Generated by Feedzy